Indian Institute of Technology Madras and United Kingdom Researchers have developed a paper-based sensor that can detect antimicrobial pollutants, which induce antimicrobial resistance in water bodies. This sensor works on a ‘see and tell’ mechanism that makes it logistically effective for wide implementation.
Scientific community across the world are focused on Antimicrobial Resistance (AMR), which could possibly become a worldwide health crisis involving deadly pathogens. Water bodies are the major source for the dissemination and transfer of AMR. Periodic monitoring of antimicrobial pollutants and antibiotic-resistant genes is the key to assess the current situation of AMR in India.
In these conditions, low cost and field-deployable sensors to detect pollutants in water bodies could be a viable tool for environmental surveillance.
The practical applications of these Sensors include:
The novel strategy for low-cost fabrication of the robust Laser Printed-Microfluidic Paper-Based Analytical Sensors developed by IIT Madras will help to detect antimicrobials easily in the parts per million range. It will also help understand the relationship between AMR and AMR-triggering pollutants and assist policymakers in framing solutions to tackle the grand societal AMR challenge.
The strategy of combining adsorption based pre-concentration using reagents that undergo a measurable colour change enabled parts per billion level detection of pollutants. The process utilizes the easily available laser printer and hence offers tremendous potential for large scale sensor fabrication. It could enable community-driven microfluidics and facilitate mass surveillance.
This research was funded by the Department of Science and Technology (DST), Government of India in bilateral collaboration with the UK’s Natural Environment Research Council and Engineering and Physical Sciences Research Council (EPSRC) under the ‘Indo UK Water Quality Research Programme.’
In IIT Madras, this research was led by Prof. S. Pushpavanam, Institute Chair Professor, Department of Chemical Engineering, IIT Madras and Dr T. Renganathan, Associate Professor, Department of Chemical Engineering, IIT Madras.